Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Medicinski Casopis ; 56(3):101-106, 2022.
Article in Bosnian | EMBASE | ID: covidwho-20245448

ABSTRACT

Objective. Most respiratory infections have similar symptoms, so it is clinically difficult to determine their etiology. This study aimed to show the importance of molecular diagnostics in identifying the etiological agent of respiratory infections, especially during the coronavirus disease 2019 (COVID-19) pandemic. Methods. A total of 849 samples from patients hospitalized at the University Clinical Center Kragujevac (from January 1 to August 1, 2022) were examined using automated multiplex-polymerase chain reaction (PCR) tests. The BioFire-FilmArray-Respiratory Panel 2.1 test was used for 742 nasopharyngeal swabs [identification of 19 viruses (including SARS-CoV-2) and four bacteria], while the BioFire-FilmArray-Pneumonia Panel was used [identification of 18 bacteria and nine viruses] (BioMerieux, Marcy l'Etoile, France) for 107 tracheal aspirates. The tests were performed according to the manufacturer's instructions, and the results were available within an hour. Results. In 582 (78.4%) samples, the BioFire-FilmArray-Respiratory Panel 2.1 plus test identified at least one pathogen. The rhinovirus (20.6%), SARS-CoV-2 (17.7%), influenza A (17.5%), respiratory syncytial virus (12.4%), and parainfluenza 3 (10.1%) were the most common. Other viruses were found less frequently, and Bordetella parapertussis was detected in one sample. In 85 (79.4%) samples, the BioFire-FilmArray-Pneumonia Panel test identified at least one bacterium or virus. The most prevalent bacteria were Staphylococcus aureus (42.4%), Haemophilus influenzae (41.2%), Streptococcus pneumoniae (36.5%), Moraxella catarrhalis (22.3%), and Legionella pneumophila (2.4%). Among viruses, rhinovirus (36.5%), adenovirus (23.5%), influenza A (11.8%), and the genus Coronavirus (4.7%), were detected. Conclusion. Multiplex-PCR tests improved the implementation of therapeutic and epidemiological measures, preventing the spread of the COVID-19 infection and Legionnaires' disease.Copyright © 2022, Serbian Medical Society. All rights reserved.

2.
Journal of Tropical Medicine ; 22(12):1661-1665, 2022.
Article in Chinese | GIM | ID: covidwho-20245315

ABSTRACT

Objective: To explore the pathogen composition and distribution characteristics of pathogens in respiratory samples from patients with fever of unknown origin. Methods: A total of 96 respiratory samples of patients with unknown cause fever with respiratory symptoms were collected from four hospitals above grade II in Shijiazhuang area (Hebei Provincial Hospital of Traditional Chinese Medicine, Luancheng District People's Hospital, Luquan District People's Hospital, Shenze County Hospital) from January to April 2020, and multiplex-fluorescent polymerase chain reaction(PCR)was used to detect influenza A virus, influenza B virus, enterovirus, parainfluenza virus I/II/III/IV, respiratory adenovirus, human metapneumovirus, respiratory syncytial virus, human rhinovirus, human bocavirus, COVID-19, Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Streptococcus pneumoniae, Klebsiella pneumoniae, Group A streptococcus, Haemophilus influenzae, Staphylococcus aureus nucleic acid detection, the results were analyzed for chi-square. Results: A total of 8 pathogens were detected in the upper respiratory tract samples of 96 fever patients, including 1 kind of virus, 6 kinds of bacterias, and Mycoplasma pneumoniae. There were 12 viruses including influenza virus and parainfluenza virus, Legionella pneumophila and Chlamydia pneumoniae were not detected. The pathogen detection rates in descending order were Streptococcus pneumoniae (58/96, 60.42%), Haemophilus influenzae(38/96, 39.58%), Klebsiella pneumoniae (14/96, 14.58%), Staphylococcus aureus (10/96, 10.42%), Mycoplasma pneumoniae (8/96, 8.33%), Pseudomonas aeruginosa (6/96, 6.25%), Group A streptococcus (4/96, 4.17%) and human rhinovirus (2/96, 2.08%). The proportions of single-pathogen infection and multi-pathogen mixed infection in fever clinic patients were similar, 41.67% (40/96) and 45.83% (44/96), respectively, and 12.50% (12/96)of the cases had no pathogens detected. The infection rate of Mycoplasma pneumoniae in female patients with fever (21.43%) was higher than that in male patients with fever (2.94%) (P < 0.05). There was no statistical difference between the distribution of of other pathogens and gender and age(P > 0.05). Conclusions: The upper respiratory tract pathogens were mainly bacterial infections, and occasional human rhinovirus and Mycoplasma pneumonia infections. In clinical diagnosis and treatment, comprehensive consideration should be given to the pathogen detection.

3.
Studies in Natural Products Chemistry ; 77:187-240, 2023.
Article in English | Scopus | ID: covidwho-20242630

ABSTRACT

Respiratory viruses have an important history as a threat to global health. However, this problem has been aggravated due to the appearance of new outbreaks caused by a newly discovered virus or variant. Recently, the new coronavirus (SARS-CoV-2) has been a major concern for health authorities, and it was classified as a pandemic by the World Health Organization. Secondary metabolites obtained from plants represent an alternative to the discovery of new active molecules and have already shown potential to combat different viruses. In an effort to demonstrate the broad spectrum of antiviral action from these metabolites, this work describes the compounds that were effective against the major viruses that cause respiratory infections in humans. In addition, their mechanisms of action were highlighted as an approach to better understanding the virus-bioactive substance relationship. Finally, this study warns that, although phytocompounds have a broad antiviral action spectrum, the development of products and clinical trials based on these secondary metabolites is still scarce and therefore deserves greater attention from the scientific community. © 2023 Elsevier B.V.

4.
British Journal of Haematology ; 201(Supplement 1):57-58, 2023.
Article in English | EMBASE | ID: covidwho-20239847

ABSTRACT

Introduction: Following the lifting of generalised restrictions and universal masking, severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2)- infected patients, especially the clinically extremely vulnerable (CEV) haematology patients, are at an increased risk for other respiratory viral coinfections;therefore, physicians need to be cognizant about excluding other treatable respiratory pathogens. Here, we report coinfection with SARS-CoV- 2 and other respiratory pathogens in patients with haematological cancers presenting to a large tertiary care hospital. Method(s): From July 2022-December 2022, patients with haematological disorders were screened for SARS-CoV- 2 and other 10 common respiratory pathogens by PCR. We performed a retrospective analysis of patients with concurrent respiratory viruses and will prospectively evaluate the same from Jan 2023 to March 2023. Result(s): During this period a total of 322 inpatients had routine screening and additional 6213 swabs were done in the outpatient/ambulatory setting, of which 294 were positive in 221 patients. We excluded all patients who had a single positive PCR swab result and specifically analysed only patients with coinfections. We identified 30 patients (14%) who had respiratory coinfections with 73 viral infections/reactivations over 6 months period, which represented 25% of all positive swabs: 25 inpatients (19 symptomatic/6 asymptomatic) and 48 in outpatients (32 symptomatic/16 asymptomatic). The median age of the cohort was 47.3 years (21-77). Patients were post allograft (n = 15), autograft (n = 7), post CART (n = 5) and postchemotherapy (n = 4). Of the 30 cases, 13 patients had concurrent infections: 5 SARS-CoV2, 10 Respiratory syncytial virus (RSV), 7 Rhino and 4 Influenza A, with all patients having dual viral infection. The remaining 17 patients had multiple viral infections but separated by a median of 54 days (range 27-137 days): 16 SARS-CoV2, 5 RSV, 6 Rhino, 2 Parainfluenza, 2 Adeno and one each of Influenza A, Influenza B, and metapneumovirus. Of the treatable infections (n = 46), 22% were detected on routine asymptomatic swabbing, with 50% of SARS-CoV2 detected on routine swabs. All 8 patients with Influenza were treated with oseltamivir, of 16 RSV cases one was treated with oral ribavirin and of the 22 SARS-CoV2 patients, 5 were treated (4 Paxlovid and 1 Remdesivir). No patients needed intensive care support and no deaths were reported. Conclusion(s): The burden of respiratory coinfections in CEV cohort has a significant impact on respiratory isolation and management, including appropriate & timely initiation of therapy for treatable viral infections. Although mortality was not increased secondary to respiratory coinfections and none needed intensive care, larger prospective cohorts are needed to assess the exact impact.

5.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20239149

ABSTRACT

Background: SAMD9L is a tumor suppressor involved in regulating the proliferation and maturation of cells, particularly those derived from the bone marrow, and appears to play an important role in cerebellar function. It can be activated in hematopoietic stem cells by type I and type II interferons. It has been hypothesized to act as a critical antiviral gatekeeper regulating interferon dependent demand driven hematopoiesis. Gain of function mutations can present with an immunodeficiency due to transient severe cytopenias during viral infection. Case presentation: We report a 3-year-old boy born full term with a history of severe thrombocytopenia requiring transfusions, developmental delay, ataxia, seizure disorder, and recurrent severe respiratory viral infections. His infectious history was significant for respiratory syncytial virus with shock requiring extracorporeal membrane oxygenation complicated by cerebral infarction and a group A streptococcus empyema, osteomyelitis requiring a left below the knee amputation, and infections with rhinovirus, COVID-19, and parainfluenza requiring hospitalizations for respiratory support. Initial immunologic evaluation was done during his hospitalization for parainfluenza. His full T cell subsets was significant for lymphopenia across all cell lines with CD3 934/microL, CD4 653/microL, CD8 227/microL, CD19 76/microL, and CD1656 61/microL. His mitogen stimulation assay to phytohemagglutinin and pokeweed was normal. Immunoglobulin panel showed a mildly decreased IgM of 25 mg/dL, but normal IgA and IgG. Vaccine titers demonstrated protective titers to 12/22 pneumococcus serotypes, varicella, diphtheria, mumps, rubella, and rubeola. Repeat full T cell subsets 6 weeks later revealed marked improvement in lymphocyte counts with CD3 3083/microL, CD4 2101/microL, CD8 839/microL, CD19 225/microL, and CD1656/microL. A primary immunodeficiency genetic panel was ordered and positive for a heterozygous SAMD9L c.1549T>C (p.Trp517Arg) mutation classified as a variant of unknown significance. Discussion(s): This patient's history of severe viral infections, ataxia, thrombocytopenia, and severe transient lymphopenia during infection is suggestive of a SAM9DL gain of function mutation. Protein modeling done by the laboratory suggests this missense mutation would affect protein structure. The mutation found has been observed in individuals with thrombocytopenia. This case highlights the importance of immunophenotyping both during acute illness and once recovered.Copyright © 2023 Elsevier Inc.

6.
J Infect Chemother ; 29(7): 678-682, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20237106

ABSTRACT

BACKGROUND: Parainfluenza virus type 3 (PIV-3) is one of the common pathogens for respiratory infections in children. Whether viral load of PIV-3 is associated with severity of respiratory diseases in children is not yet known. Our aim was to determine significance of PIV-3 viral load among infected children. METHODS: We conducted a single-center, retrospective study at Tokyo Metropolitan. Children's Medical Center, Japan, from June to August 2021. Hospitalized children were screened with a posterior nasal swab for multiplex PCR, and viral load was subsequently measured from remained samples by real-time PCR. Demographic data were collected from digital charts. PIV-3 positive patients were categorized into mild group with no oxygen demand, moderate group with low-flow oxygen demand and severe group with high-flow nasal cannula oxygen or non-invasive positive pressure ventilation or mechanical ventilation. Viral loads were compared among mild, moderate and severe groups. RESULTS: 151 patients were positive for PIV-3. We found no statistically significant association among PIV-3 viral load and severity of respiratory diseases (p = 0.35), and no statistically significant association between severity of illness and co-detection of other viruses. In each severity group, relatively high viral load per posterior nasal swab was observed at the time of testing. CONCLUSION: Among PIV-3 patients, we could not find statistically significant between viral load and their severity, therefore we could not conclude that viral load is a good surrogate marker for clinical severity of PIV-3.


Subject(s)
Respiratory Tract Infections , Virus Diseases , Child , Humans , Infant , Parainfluenza Virus 3, Human/genetics , Viral Load , Retrospective Studies , Respiratory Tract Infections/diagnosis , Multiplex Polymerase Chain Reaction
7.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(10):1059-1065, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2327435

ABSTRACT

Bovine rhinitis virus (BRV) is an important pathogen responsible for the bovine respiratory disease complex (BRDC) and can be divided into two genotypes (BRAV and BRBV). To establish a duplex quantitative real-time RT-PCR assay for simultaneous detection of BRAV and BRBV, specific primers and TaqMan probes targeting the 5'NTR of BRAV and 3'NTR of BRBV were designed. A duplex quantitative real- time RT- PCR assay for simultaneous detecting BRAV and BRBV was preliminarily established by optimizing reaction conditions for each step. The assay specifically detects BRAV and BRBV, and no crossreaction with other common bovine respiratory pathogens, including IDV, BCoV, BVDV-1, BRSV, BPIV-3, BAdV-3, mycoplasma bovis, Pasteurella multocida, Mannheimia haemolytica, Escherichia coli, and Salmonella, was observed. In addition, the sensitivity test showed that the detection limits of this assay were 3.2x101 copies/L for both BRAV and BRBV plasmid standards. Besides, the repeatability test showed that the variation coefficients of this assay were less than 0.05 from both lot-to-lot and intra-lot. These results showed that the assay has high specificity, extreme sensitivity, and good repeatability. Moreover, a total of 43 nasal swabs of BRDC cattle were tested by our assay and four other quantitative real-time RT-PCR assays, including 3 BRAV assays and 4 BRBV assays. The results showed that the detection rates of our assay were 32.56%(14/43) for BRAV and 30.23%(13/43) for BRBV, and the detection rates of other quantitative real-time RT-PCR assays were 0(0/43), 2.33%(1/43), 23.26%(10/43) for BRAV and 27.91% (12/43), 27.91%(12/43), 27.91%(12/43), 27.91%(12/43) for BRBV, indicating that our assay has a more substantial detection capability than other assays. This study firstly established a duplex quantitative real-time RT-PCR assay for simultaneous detection of BRAV and BRBV, and the assay exhibited high specificity, sensitivity, and stability. Moreover, the study firstly confirmed the existence of BRAV in China, contributing to the prevention and control of BRDC.

8.
International Journal of Infectious Diseases ; 130(Supplement 2):S45-S46, 2023.
Article in English | EMBASE | ID: covidwho-2325956

ABSTRACT

COVID-19 mRNA vaccines: COVID-19 pandemic has made an extraordinary impact on global vaccine technology platform developments. Never in human history have there at least 6 vaccine platforms including: inactivated, protein subunit, VLP and other 3 new platforms i.e., mRNA, viral vector, and DNA, with more than 160 vaccine candidates being developed and tested in clinical trials. Nonetheless, among these several vaccine platforms, mRNA vaccine has been proven to be one of the most effective vaccines against COVID-19. There are two mRNA vaccines authorized for emergency use within a year and currently more than 20 mRNA vaccines are in clinical trials. The main advantages of mRNA vaccines are that they are speedily to design and develop, induce strong antibody and T-cell responses, manufacturing faster and at a lower cost. However, one of the major limitations is that it must be stored in cold temperatures. Currently more than billion doses of COVID-19 mRNA vaccines have been given globally. mRNA vaccines will be a key platform for next pandemics preparedness, it is therefore establishing this platform in various regions and LMICs is critical. Beyond COVID-19: A number of viral and cancer mRNA vaccines have been developing even before COVID-19. At least 12 mRNA vaccines against various infectious diseases are now in clinical evaluation, including Chikungunya virus, Cytomegalovirus, Epstein-Barr virus, Human metapneumovirus and parainfluenza virus type3, HIV, Influenza, Nipah, Rabies, Lasa, RSV, Zika, Varicella-zoster virus. Only few are entering phase 3 such as a CMV vaccine, RSV, seasonal influenza. Current mRNA cancer vaccines development, including brain, breast, melanoma, esophagus, lung, ovarian, prostate and solid tumors. Most are aimed for personalized therapy. By 2023, at least 1 viral mRNA vaccine may get approval, whereas a cancer vaccine might take much longer time. Nevertheless, the remaining challenge at the global level is how to truly overcome the vaccine inequity issues in a sustainable way.Copyright © 2023

9.
Medicinski Casopis ; 56(3):101-106, 2022.
Article in Bosnian | EMBASE | ID: covidwho-2320953

ABSTRACT

Objective. Most respiratory infections have similar symptoms, so it is clinically difficult to determine their etiology. This study aimed to show the importance of molecular diagnostics in identifying the etiological agent of respiratory infections, especially during the coronavirus disease 2019 (COVID-19) pandemic. Methods. A total of 849 samples from patients hospitalized at the University Clinical Center Kragujevac (from January 1 to August 1, 2022) were examined using automated multiplex-polymerase chain reaction (PCR) tests. The BioFire-FilmArray-Respiratory Panel 2.1 test was used for 742 nasopharyngeal swabs [identification of 19 viruses (including SARS-CoV-2) and four bacteria], while the BioFire-FilmArray-Pneumonia Panel was used [identification of 18 bacteria and nine viruses] (BioMerieux, Marcy l'Etoile, France) for 107 tracheal aspirates. The tests were performed according to the manufacturer's instructions, and the results were available within an hour. Results. In 582 (78.4%) samples, the BioFire-FilmArray-Respiratory Panel 2.1 plus test identified at least one pathogen. The rhinovirus (20.6%), SARS-CoV-2 (17.7%), influenza A (17.5%), respiratory syncytial virus (12.4%), and parainfluenza 3 (10.1%) were the most common. Other viruses were found less frequently, and Bordetella parapertussis was detected in one sample. In 85 (79.4%) samples, the BioFire-FilmArray-Pneumonia Panel test identified at least one bacterium or virus. The most prevalent bacteria were Staphylococcus aureus (42.4%), Haemophilus influenzae (41.2%), Streptococcus pneumoniae (36.5%), Moraxella catarrhalis (22.3%), and Legionella pneumophila (2.4%). Among viruses, rhinovirus (36.5%), adenovirus (23.5%), influenza A (11.8%), and the genus Coronavirus (4.7%), were detected. Conclusion. Multiplex-PCR tests improved the implementation of therapeutic and epidemiological measures, preventing the spread of the COVID-19 infection and Legionnaires' disease.Copyright © 2022, Serbian Medical Society. All rights reserved.

10.
Gates Open Research ; 6 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2315691

ABSTRACT

Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic. Methods: Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Result(s): Overall virus positivity was 44.2%, with prevalence higher in children <5 years (80%) compared to children aged 5-17 years (53.1%), adults aged 18-50 (39.5%) and >50 years (39.9%), p<0.0001. After SARS-CoV-2 (18.3%), rhinoviruses (10.5%) and influenza viruses (5.5%) were the most prevalent. SARS-CoV-2 positivity was lower in children <5 (4.3%) and 5-17 years (12.7%) than in adults aged 18-50 (19.3%) and >50 years (24.3%), p<0.0001. In contrast, rhinoviruses were most prevalent in children <5 years (28.7%), followed by children aged 5-17 (15.8%), adults aged 18-50 (8.3%) and >50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion(s): Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months.Copyright: © 2023 Jarju S et al.

11.
Ontario Veterinary Medical Association (OVMA) ; : 288-292, 2022.
Article in English | GIM | ID: covidwho-2291234

ABSTRACT

This paper describes the epidemiology, prevalence, transmission, prevention and control of some infectious diseases in companion animals, livestock, wild animals and humans in Ontario, Canada, in 2022, including SARS-CoV-2;Echinococcus multilocularis, Leishmania spp. and SARS-CoV-2;antimicrobial stewardship resources;2 cases of rabid dogs imported from Iran (July 2021 and January 2022);prevalence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriacea, Dirofilaria immitis, Brucella canis, canine parainfluenza and adeno- and herpes viruses in dogs recently imported from Asia;Paragonimus kellicotti lung flukes and Streptococcus equi subsp. zooepidemicus in dogs;African swine fever in pet pigs, backyard pigs and wild pigs and blastomycosis in dogs and humans.

12.
Encyclopedia of Infection and Immunity ; 4:545-555, 2022.
Article in English | Scopus | ID: covidwho-2303252

ABSTRACT

Since antiquity, humans have strived to find ways to prevent the suffering and mortality caused by infectious pathogens. No interventions in medical history have had a bigger impact on human health than the development of preventative vaccines against infectious diseases. Viruses represent important pathogens responsible for epidemics and, in the case of influenza and SARS-CoV-2, global pandemics responsible for substantial - and sometimes staggering - morbidity and mortality. This article reviews the viral vaccines used today in clinical practice, summarizes the differences in vaccine design and manufacturing, and identifies priorities for future research and development of new viral vaccines. © 2022 Elsevier Inc. All rights reserved.

13.
Voprosy Prakticheskoi Pediatrii ; 17(6):45-54, 2022.
Article in Russian | EMBASE | ID: covidwho-2303177

ABSTRACT

Objective. To evaluate the efficacy of therapy for acute respiratory viral infections (ARVIs) in children with antiviral medications: inosine pranobex (Groprinosin, Gedeon Richter) and Kagocel (Kagocel, Niarmedic Pharma LLC) in comparison with symptomatic treatment without etiotropic agents based on clinical and laboratory parameters. Patients and methods. The clinical and laboratory observation was conducted in an outpatient setting in the pre-COVID-19 period between 2018 and 2020. Acute respiratory infections were diagnosed using licensed testing systems by multiplex polymerase chain reaction (PCR) with detection of nucleic acid viral genomes: influenza, rhinovirus, respiratory syncytial virus, metapneumovirus, parainfluenza, seasonal coronaviruses, adenoviruses, and bocavirus). A total of 151 children aged 3 to 15 years were examined and monitored in dynamics, with 78.7% of positive and 21.3% of negative results detected by PCR in the nasopharyngeal and oropharyngeal swabs. The patients were randomized into three groups depending on the antiviral medication prescribed: group 1 (53 children) received Groprinosin;group 2 (52 children) received Kagocel;group 3 (control, 46 children) received only symptomatic therapy without antiviral agents. Results. The study demonstrated a significant positive effect in patients in group 1 treated with Groprinosin (n = 53). At the end of therapy for both mono- and mixed infections, there were 95.8% of negative results (according to PCR diagnosis, that is, the absence of viral genome). In children in group 2 (n = 52) treated with Kagocel, the absence of viral nucleic acids (NAs) was observed less frequently (in 77.3% of cases). In children in group 3 (n = 46) who did not receive etiotropic antiviral therapy, there were only 40.3% of negative results after the end of treatment, and viral NAs were detected in 59.7% of patients. In this case, a 5-day course of Groprinosin was prescribed, after which the PCR results became negative in all patients. Therefore, children with recurrent respiratory infections, mixed infections, and herpesvirus infections require longer therapy. Additionally, a high frequency of ARVI complications was noted in group 3 (5 (10.9%) patients, where otitis was observed in 1 case, sinusitis - in 2 cases, bronchitis - in 2 cases), whereas 1 (1.8%) patient taking Groprinosin had otitis, and 1 (1.9%) patient taking Kagocel had pneumonia. Conclusion. This study was the first to investigate antibody titers to respiratory viruses in dynamics at 3, 6 and 12 months after the onset of ARVI. It showed that the development of antibodies to respiratory viruses is very unstable and does not occur in all patients. Antibodies almost disappeared by the third month after ARVI and were no longer detectable by the sixth month. After 12 months, patients suffered a new ARVI and developed the corresponding antibodies. This information will be especially relevant in conditions of the rise in the incidence of ARVIs, as well as the COVID-19 pandemic observed in recent years.Copyright © 2022, Voprosy Prakticheskoi Pediatrii. All rights reserved.

14.
J Infect Dis ; 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-2298699

ABSTRACT

BACKGROUND: Interactions of Streptococcus pneumoniae with viruses feature in the pathogenesis of numerous respiratory illnesses. METHODS: We undertook a case-control study among adults at Kaiser Permanente Southern California between 2015-2019. Cases were diagnosed with lower respiratory tract infection (LRTI; including pneumonia or non-pneumonia LRTI diagnoses) with viral infections detected by multiplex polymerase chain reaction testing. Controls without LRTI diagnoses were matched to cases by demographic and clinical attributes. We measured vaccine effectiveness (VE) for PCV13 against virus-associated LRTI via the adjusted odds ratio of PCV13 receipt, comparing cases to controls. RESULTS: Primary analyses included 13,856 virus-associated LRTI cases and 227,887 matched controls. Receipt of PCV13 was associated with 24.9% (95% confidence interval: 18.4-30.9%) VE against virus-associated pneumonia and 21.5% (10.9-30.9%) VE against other (non-pneumonia) virus-associated LRTI. We estimated 26.8% (19.9-33.1%) and 18.6% (9.3-27.0%) VE against all virus-associated LRTI episodes diagnosed in inpatient and outpatient settings, respectively. We identified statistically-significant protection against LRTI episodes associated with influenza A and B viruses, endemic human coronaviruses, parainfluenza viruses, human metapneumovirus, and enteroviruses, but not respiratory syncytial virus or adenoviruses. CONCLUSIONS: Among adults, PCV13 conferred moderate protection against virus-associated LRTI. Impacts of PCVs may be mediated, in part, by effects on polymicrobial interactions between pneumococci and respiratory viruses.

15.
Journal of Clinical Virology Plus ; 2(2) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2276389

ABSTRACT

The simultaneous detection and specific identification of multiple pathogens from patients exhibiting respiratory symptoms is important for directing pathogen-specific treatments. The ePlex Respiratory Pathogen Panel 2 (ePlex RP2 panel) is a multiplex molecular test for the qualitative detection of many viral and bacterial pathogens including SARS-CoV-2 in respiratory tract infections. The ePlex RP2 panel received FDA emergency use authorization for nasopharyngeal swab specimens collected in viral transport media. In the evaluation using the ePlex RP2, a total of 67 nasopharyngeal swab specimens were compared to the ePlex RP panel and the CDC 2019-nCoV Real-Time RT-PCR assay as the reference methods. The overall agreement of the ePlex RP2 panel was 100%. The ePlex RP2 panel could detect Omicron BA1 and BA2. The ePlex RP2 panel is a rapid, sensitive and specific "specimen-to-answer" platform to detect simultaneously multiple viruses and bacteria in the upper respiratory tract.Copyright © 2022 The Authors

16.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2271246

ABSTRACT

Background: In the northern hemisphere, Respiratory Syncytial Virus (RSV) is more frequently detected from December to February. In Italy, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) presented a peak in incidence from the end of December 2021 to February 2022. Aim(s): To evaluate how SARS-CoV-2 pandemic has influenced RSV circulation. Method(s): We evaluated 389 children, aged 0-18 years, admitted for respiratory tract infections from September 2021 to January 2022 throughout Italy, from the north to the south. Children underwent nasal washing from 1 to 3 days after hospitalization. A (RT)-PCR was developed for detecting 15 respiratory viruses, including RSV, influenza virus A and B, human coronavirus OC43, 229E, NL-63 and HUK1, adenovirus, rhinovirus, parainfluenza virus 1-3, human bocavirus and human metapneumovirus. Result(s): We detected a virus in 338 children (86.9%): RSV was found in 267 (68.7%), other viruses in 71 (18.3%). 51 children (13.1%) resulted negative. Dividing our observational period in two-week timeframes, we found that RSV showed an early peak from October to the first half of December 2021 compared to its usual seasonality. In a previous study, we have demonstrated that RSV circulation was incredibly low from September 2020 to January 2021, in contrast with what we found in the same period in 2021-2022. Comparing RSV and SARS-CoV-2 incidences, we found that these two viruses spread in opposite ways: when SARS-CoV-2 present an incidence peak, RSV circulation reduced and viceversa. Conclusion(s): The relationship between RSV and SARS-CoV-2 showed that viral interference plays a crucial role in their epidemiology.

17.
Journal of Laboratory Medicine ; 47(1):47-54, 2023.
Article in English | EMBASE | ID: covidwho-2262079

ABSTRACT

Objectives: This study aimed to describe the pathogen spectrum of bacteria and viruses of RTIs in hospitalized children during the Coronavirus disease 2019 (COVID-19) epidemic in Shenzhen. Method(s): From October 2020 to October 2021, the results of pathogenic tests causing RTIs were retrospectively analyzed in hospitalized children in Shenzhen Luohu Hospital Group. Result(s): 829 sputum samples for bacterial isolation and 1,037 nasopharyngeal swabs for virus detection in total. The positive detection rate (PDR) of bacteria was 42.1%. Staphylococcus aureus (18.8%) was the predominant bacteria detected in positive cases, with Moraxella catarrhalis (10.9%), Streptococcus pneumoniae (9.5%) following. The PDR of the virus was 65.6%. The viruses ranking first to third were Human Rhinovirus (HRV), Respiratory syncytial virus (RSV), and Human Parainfluenza (HPIV), with rates of 28.0, 18.1, and 13.5%, respectively. Children under 3 years were the most susceptible population to RTIs. The pathogens of S. aureus, M. catarrhalis, S. pneumoniae, HRV, and HPIV were more prevalent in autumn. Meanwhile, RSV had a high rate of infection in summer and autumn. S. aureus and HRV had higher co-infection rates. Conclusion(s): Our findings demonstrate the pathogen spectrum of 1,046 hospitalized children with RTIs in Shenzhen, China, during the COVID-19 outbreak.Copyright © 2022 the author(s), published by De Gruyter, Berlin/Boston.

18.
Gates Open Research ; 6 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2256644

ABSTRACT

Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic. Method(s): Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Result(s): Overall virus positivity was 44.2%, with prevalence higher in children <5 years (80%) compared to children aged 5-17 years (53.1%), adults aged 18-50 (39.5%) and >50 years (39.9%), p<0.0001. After SARS-CoV-2 (18.3%), rhinoviruses (10.5%) and influenza viruses (5.5%) were the most prevalent. SARS-CoV-2 positivity was lower in children <5 (4.3%) and 5-17 years (12.7%) than in adults aged 18-50 (19.3%) and >50 years (24.3%), p<0.0001. In contrast, rhinoviruses were most prevalent in children <5 years (28.7%), followed by children aged 5-17 (15.8%), adults aged 18-50 (8.3%) and >50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion(s): Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months.Copyright © 2022 Jarju S et al.

19.
2023 OVMA (Ontario Veterinary Medical Association) Conference and Tradeshow ; : 284-288, 2023.
Article in English | CAB Abstracts | ID: covidwho-2286421

ABSTRACT

This paper describes the clinical signs and use of differential laboratory diagnostic techniques (computed tomography, cytology, histopathology, antigen/antibody detection and polymerase chain reaction) for infectious (viral, bacterial, fungal and parasitic) and non-infectious (inflammatory/immune mediated, neoplastic, cardiac, malformation, foreign body, smoke inhalation, aspiration of caustic material, non-cardiogenic, pulmonary oedema, traumativ, pneumothorax, pulmonary contusions and idiopathic) causes of respiratory diseases in cats and dogs in Ontario, Canada.

20.
The Lancet Respiratory Medicine ; 10(8):725, 2022.
Article in English | EMBASE | ID: covidwho-2283935
SELECTION OF CITATIONS
SEARCH DETAIL